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Avatar Digitization From a Single Image

input image face mesh and hair stripscomplete face texture synthesized hair texture 3D avatar 3D avatar (side)

Figure 1: We introduce an automatic approach for modeling 3D avatars with hair from a single input image. Our approach can infer
complete and textured meshes for faces and volumetric strips for hair from a partially visible subject. Our avatar reconstruction includes
eyes, teeth, and tongue models and is fully rigged using a combination of blendshapes and joint-based skeleton.

Abstract1

We present a fully automatic framework for creating a complete2

3D avatar from a single unconstrained image. We digitize the en-3

tire model using a textured mesh representation for the head and4

volumetric strips with transparency for the hair. Our digitized mod-5

els can be easily integrated into existing game engines and readily6

provide animation-friendly blendshapes and joint-based rigs. The7

proposed system integrates state-of-the-art advances in facial shape8

modeling, appearance inference, and a new pipeline for single-view9

hair generation based on hairstyle retrieval from a massive database,10

followed by a strand-to-hair-strip conversion method. We also in-11

troduce a novel algorithm for realistic hair texture synthesis for12

the strips based on feature correlation analysis using a deep neural13

network. Our generated models are visually comparable to state-14

of-the-art game characters, as well as avatar generation techniques15

based on multiple input images. We demonstrate the effectiveness16

of our approach on a variety of images taken in the wild, and show17

that compelling avatars can be generated by anyone without effort.18

Keywords: dynamic avatar, face, hair, digitization, modeling, rig-19

ging, texture synthesis, data-driven, deep learning, neural network20

Concepts: •Computing methodologies → Mesh geometry mod-21

els;22

1 Introduction23

Alongside entertainment applications and the ability to immerse in24

a captivating alternate universe, the democratization of virtual real-25

ity (VR) has the potential to revolutionize 3D face-to-face commu-26

nication and social interactions through compelling digital embodi-27

ments of ourselves, as demonstrated lately with the help of VR head28

mounted displays with facial sensing capabilities [Li et al. 2015;29

Thies et al. 2016b; Olszewski et al. 2016] or voice-driven technol-30

ogy demonstrated at Oculus Connect 3. Faithfully personalized 3D31
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avatars would not only facilitate natural telepresence between par-32

ticipants in virtual worlds, but also enable new gaming experiences33

with individualized characters.34

Recent progress in data-driven methods and deep learning research35

have catalyzed the development of high-quality 3D face modeling36

techniques from a single image [Thies et al. 2016a; Saito et al.37

2016b] and even realistic strand-level hair models can now be gen-38

erated from an image with minimal human input [Hu et al. 2015;39

Chai et al. 2016]. Despite efforts in real-time simulation [Chai40

et al. 2014], strand-based representations are still very difficult41

to integrate into game environments due to their rendering and42

simulation complexity. Furthermore, strands are not efficient for43

hairstyles with highly stochastic structures (messy, curly, afro-hair,44

etc.). Cao et al. [2016] have recently introduced a system that uses45

a highly versatile image-based mesh representation, but the volu-46

metric structure of hair is not captured, and they require multiple47

photographs, as well as some manual intervention as input. Despite48

substantial advances in making avatar creation as easy as possible,49

the barriers to entry are still too high for commodity user adoption.50

In this paper, we present the first framework that automatically51

generates a complete high-quality 3D avatar from a single un-52

constrained image using textured meshes for faces and volumetric53

strips for hair. By eliminating the need of multiple photographs and54

controlled capture, we can easily digitize our favorite celebrities or55

iconic figures from any Internet picture. Our digitized models are56

fully rigged with intuitive animation controls based on blendshapes57

and joint-skeletons, and can be easily integrated into existing game58

engines. In addition to unknown illumination conditions, recon-59

structing from images in the wild is further challenged by largely60

non-visible regions and occlusions. How does a face region look61

like when it is blocked by hair, and how can we predict the appear-62

ance of the back of a head if only the front is visible?63

We address these challenges by carefully integrating multiple64

cutting edge techniques into a comprehensive facial digitization65

pipeline, and introduce a new single-view hair modeling algorithm66

for generating high-quality textured hair strips. For the face, we67

first fit a linear face model to a pre-segmented input image using68

a combination of landmark detection [Kazemi and Sullivan 2014]69

and a dense analysis-by-synthesis approach [Thies et al. 2016a] en-70

hanced with visibility constraints. A deep learning-based texture in-71

ference method [Saito et al. 2016b] then produces a high-resolution72

and texture map of the entire head, even from low-resolution in-73

put photographs. Given the segmented hair region and an orienta-74

tion field analysis, we compute a descriptor to retrieve the closest75
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matching hairstyle from a large database of hair models similar to76

the method of Chai et al. [2016]. The closest matching hairstyle is77

then deformed to fit the segmented hair image and its orientation78

field. Each strand is converted into a set of strips that cover the hair79

volume. To generate photo-realistic and non-repeating textures of80

each hair strip, we present a new synthesis algorithm based on fea-81

ture correlation analysis using deep neural networks. For visually82

pleasing animations, especially for long hairs, we also rig our hair83

model to the head skeleton using inverse distance skinning [Jacob-84

son ].85

We demonstrate the effectiveness of our approach on a wide range86

of subjects with different hairstyles, and also show compelling an-87

imated results of dynamic avatars that are automatically generated88

from a single image. The output quality of our framework is com-89

parable to state-of-the-art game characters, and superior to cutting-90

edge avatar modeling systems that are based on multiple input pho-91

tographs [Ichim et al. 2015; Cao et al. 2016].92

Contributions:93

• We present the first fully automatic framework for complete94

3D avatar modeling and rigging, that includes hair capture,95

from a single unconstrained image.96

• Our facial digitization pipeline integrates the latest advances97

in facial segmentation, shape modeling, and appearance infer-98

ence.99

• We develop a new data-driven single-view hair digitization100

pipeline for generating volumetric hair structures, based on101

highly efficient and versatile hair strips.102

• We introduce a deep learning-based texture synthesizing algo-103

rithm for producing hair strip textures that are photorealistic,104

non-repeating, and individualized to the input.105

2 Background106

Facial Modeling and Capture. Over the past two decades, a107

great amount of researches have been dedicated to the modeling and108

animation of digital faces. We refer to [Parke and Waters 2008] for109

a comprehensive introduction and overview. Though artist-friendly110

digital modeling tools have significantly evolved over the years, 3D111

scanning and performance capture technologies provide an attrac-112

tive way to scale content creation and improve realism through ac-113

curate measurements from the physical world. While expensive114

and difficult to deploy, sophisticated 3D facial capture systems [De-115

bevec et al. 2000; Ma et al. 2007; Beeler et al. 2010; Bradley et al.116

2010; Beeler et al. 2011; Ghosh et al. 2011] are widely adopted117

in high-end production and have proven to be a critical component118

for creating photoreal digital actors. Different rigging techniques119

such as joint-based skeletons, blendshapes [Li et al. 2010; von der120

Pahlen et al. 2014], or muscle-based systems [Terzopoulos and Wa-121

ters 1990; Sifakis et al. 2005] have been introduced to ensure in-122

tuitive control in facial animation and high-fidelity retargeting for123

performance capture. Dedicated systems for capture, rigging, and124

animation have also emerged for the treatment of secondary com-125

ponents such as eyes [Miller and Pinskiy 2009; Bérard et al. 2016],126

lips [Garrido et al. 2016b], and teeth [Wu et al. 2016]. Despite high-127

fidelity output, these capture and modeling systems are too complex128

for mainstream adoption.129

The PCA-based linear face models of [Blanz and Vetter 1999]130

have laid the foundations for the modern treatment of image-based131

3D face modeling, with extensions to multi-view stereo [Blake132

et al. 2007], large-scale internet pictures [Kemelmacher-Shlizerman133

2013], massive 3D scan datasets [Booth et al. 2016], and the use134

of shading cues [Kemelmacher-Shlizerman and Basri 2011]. Blanz135

and Vetter have demonstrated in their original work that compelling136

facial shapes and appearances with consistent parameterization can137

be extracted reliably from a single input image. To handle facial ex-138

pressions, multi-linear face models have been used, that are based139

on PCA [Vlasic et al. 2005] and FACS-based blendshapes [Cao140

et al. 2014b]. The low dimensionality and effectiveness in repre-141

senting faces have made linear face models particularly suitable for142

instant 3D face modeling and robust facial performance capture in143

monocular settings using depth sensors [Weise et al. 2009; Weise144

et al. 2011; Bouaziz et al. 2013; Li et al. 2013; Hsieh et al. 2015],145

as well as RGB video [Garrido et al. 2013; Shi et al. 2014; Cao146

et al. 2014a; Garrido et al. 2016a; Thies et al. 2016a; Saito et al.147

2016a]. When modeling a 3D face automatically from an image,148

sparse 2D facial landmarks [Cootes et al. 2001; Cristinacce and149

Cootes 2008; Saragih et al. 2011; Xiong and De la Torre 2013] are150

typically used for robust initialization during fitting. State-of-the-151

art landmark detection methods achieve impressive efficiency by152

using explicit shape regressions [Cao et al. 2013; Ren et al. 2014;153

Kazemi and Sullivan 2014].154

While linear models can estimate entire head models from a sin-155

gle view, the resulting textures are typically crude approximations156

of the subject, especially in the presence of details such as facial157

hear, complex skin tones, and wrinkles. In order to ensure likeness158

to the captured subject, existing 3D avatar creation systems often159

avoid the use of a purely linear appearance model, but use acqui-160

sitions from multiple views to build a more accurate texture map.161

Ichim et al. [Ichim et al. 2015] introduced a comprehensive pipeline162

for video-based avatar reconstruction in uncontrolled environments.163

They first produce a dense point cloud using multi-view stereo and164

then estimate a 3D face model using non-rigid registration. An in-165

tegrated albedo texture map is then extracted using a combination166

of Poisson blending and light factorization via spherical harmonics.167

Their method is limited to a controlled acquisition procedure based168

on a semi-circular sweep of a hand-held sensor, and hair modeling169

is omitted. Chai et al. [Chai et al. 2015] presented a single-view170

system for high-quality 2.5D depth map reconstruction of a both171

faces and hair, using structural hair priors, silhouette, and shad-172

ing cues. However, their technique is not suitable for avatars, as a173

full head cannot be produced nor animated. More recently, Cao et174

al. [2016] developed an end-to-end avatar creation system that can175

produce compelling face and hair models based on an image-based176

mesh representation. While their system can handle very large vari-177

ations of hairstyles and also produce high-quality facial animations178

with fine-scale details, they require up to 32 input images and some179

manual guidance in segmentation and labeling.180

Instead of a controlled capture procedure with multiple pho-181

tographs, we propose a system that is fully automatic and only182

needs a single image as input. We also introduce a new hair dig-183

itization framework based on the highly efficient and flexible tex-184

tured strips representation, often adopted in state-of-the-art games.185

Hair strips are more efficient for simulation and rendering than hair186

strands, but also achieve believable volumetric structures as op-187

posed to the textured mesh representation used by [Cao et al. 2016].188

Hair Modeling and Capture. An essential but intricate compo-189

nent for life-like avatars and CG characters is hair. In studio set-190

tings, human hair is traditionally modeled, simulated, and rendered191

using sophisticated design tools [Kim and Neumann 2002; Yuk-192

sel et al. 2009; Choe and Ko 2005; Weng et al. 2013]. We refer193

to the survey of Ward et al. [Ward et al. 2006] for an extensive194

overview. In analogy to faces, 3D hair capture techniques have been195

introduced to directly digitize hair from the physical world. High-196

fidelity acquisition systems typically involve controlled recording197

sessions, manual assistance, and complex hardware equipments,198
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Figure 2: Our single-view avatar creation framework is based on a pipeline for complete face digitization and one for hair strip digitization.

such as multi-view stereo cameras [Paris et al. 2008; Jakob et al.199

2009; Beeler et al. 2012; Luo et al. 2013; Echevarria et al. 2014] or200

even thermal imaging [Herrera et al. 2012].201

Hu et al. [Hu et al. 2014a] demonstrated a highly robust multi-view202

hair modeling approach using a data-collection of pre-simulated203

hair strands, which can fully eliminate the need for manual hair204

segmentation. Since physically simulated hair strands are used as205

shape priors, their method can only handle unconstrained hairstyles.206

The same authors later introduced the use of procedurally gener-207

ated hair patches [Hu et al. 2014b] to capture highly convoluted208

hairstyles such as braids. They also moved to a more accessi-209

ble acquisition approach based on a single RGB-D camera, that is210

swept around the subject. Single-view hair digitization methods211

have been pioneered by Chai et al. [Chai et al. 2012; Chai et al.212

2013] but rely on high-resolution input photographs and can only213

produce the frontal geometry of the hair. A database-driven ap-214

proach by Hu et al. [Hu et al. 2015] later showed that the mod-215

eling of complete strand-level hairstyles is possible with the help216

of very few user strokes as guidance. A similar, but fully auto-217

matic approach has been furthered by [Chai et al. 2016] using a218

larger database for shape retrieval and a deep learning-technique219

for hair segmentation. While high-quality hair models can be gen-220

erated, many hairstyles with multiple layers or stochastic structures221

(e.g., messy ones, afro-hair, etc.), are difficult to capture and not222

suited for strand-based representations. Furthermore, strand-based223

hair models are still difficult to integrate into real-time game envi-224

ronments, due to their complexity for real-time hair rendering and225

simulation. Inspired by cutting-edge game characters, our proposed226

hair digitization pipeline uses the highly efficient and versatile strip227

representation for hair. Our deep learning-based synthesis algo-228

rithm also produces individualized, realistic, and non-repeating hair229

textures for each strip.230

3 Avatar Modeling Framework231

Our end-to-end pipeline for both face and hair digitization is illus-232

trated in Figure 2. An initial pre-processing step computes pixel-233

level segmentation of the face and hair regions. We then produce234

a fully rigged avatar based on textured meshes and hair strips from235

this image.236

Image Pre-Processing. Segmenting the face and hair regions of237

an input image improves the accuracy of the 3D model fitting pro-238

cess, as only relevant pixels are used as constraints. It also provides239

us additional occlusion areas, that need to be completed during tex-240

ture reconstruction, for example when the face is covered by hair.241

For the hair modeling step, the silhouette of the segmented hair re-242

gion will provide important matching cues.243

We adopt the real-time and fully automatic semantic segmenta-244

tion technique of [Saito et al. 2016a] which uses a two-stream de-245

convolution network to predict face and hair regions. This tech-246

nique produces accurate and robust pixel-level segmentations for247

unconstrained photographs. While the original implementation is248

designed to process face regions, we repurpose the same convo-249

lutional neural network to segment hair. In contrast to the image250

pre-processing step of [Cao et al. 2016], ours is fully automatic.251

To train our convolutional neural network, we collected 9269 im-252

ages from the public LFW face dataset [Huang et al. 2007] and pro-253

duce the corresponding binary segmentation masks for both faces254

and hair via Amazon Mechanical Turk. We detect the face in each255

image using the popular Viola-Jones face detector [2001] and nor-256

malize their positions and scales to a 128 × 128 image. To avoid257

overfitting, we augment the training dataset with random Gaussian-258

distributed transformation perturbations and produce 83421 images259

in total. The standard deviations are 10◦ for rotations, 5 pixels for260

translations, and 0.1 for scale, and the means are 0, 0, and 1.0 re-261

spectively. We further use a learning rate of 0.1, a momentum of262

0.9, and weight decay of 0.0005 for the training. The optimization263

uses 50, 000 stochastic gradient descent (SGD) iterations which264

take roughly 10 hours on a machine with 16GB RAM and NVIDIA265

GTX Titan X GPU. We refer to the work of [Saito et al. 2016a] for266

implementation details. Once trained, the network outputs a multi-267

class probability map (for face and hair) from an arbitrary input268

image. A posthoc inference algorithm based on dense conditional269

random field (CRF) [Krähenbühl and Koltun 2011] is then used to270

extract the resulting binary segmentation mask.271

Face Digitization. We decouple the digitization of faces and hair272

since they span entirely different spaces for shape, appearance, and273

deformation. While the full head topology of the face is consistent274

between subjects and expressions, the mesh of the hair model will275

be unique for each person.276

We first fit a PCA-based linear face model for shape and appear-277

ance to the segmented face region. We first detect 2D landmarks278

based using the shape regression method of [Kazemi and Sullivan279

2014] to initialize the fitting. We then adopt a variant of the ef-280

ficient pixel-level analysis-through-synthesis optimization method281

of [Thies et al. 2016a] to solve for the PCA coefficients of the282

3D face model and an initial low-frequency albedo map. We283

use our own artist head topology with identity shapes transferred284

from [Blanz and Vetter 1999] and expressions from [Cao et al.285
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2014b]. We also incorporate a visibility constraint into the model286

fitting process to improve occlusion handling and non-visible re-287

gions. We also construct a PCA-based appearance model for full288

head textures, using artist-painted skin textures in missing regions289

of the original data samples. We then infer high-frequency details290

to the frontal face regions even if they are not visible in the capture291

using a feature correlation analysis approach based on deep neural292

networks [Saito et al. 2016b]. Finally, we eliminate the expression293

coefficients of our linear face model to obtain the neutral expres-294

sion. The resulting model is then translated and scaled to fit the295

eye-balls using the average pupillary distance of an adult human 66296

mm. We then translate and scale the teeth/gum to fit pre-selected297

vertices of the mouth region. We ensure that these secondary com-298

ponents do not intersect the face using a penetration test for all the299

FACS expressions of our custom animation rig.300

Hair Digitization. Our hair digitization pipeline can be loosely301

divided into three parts: (1) we use a strand representation to obtain302

an accurate model of the subject’s hair, (2) the geometry is simpli-303

fied from strands to strips to reduce rendering complexity and to304

capture more complex hair textures, and (3) realistic hair textures305

are generated for the strips by analyzing the structure from visi-306

ble regions. We first prepare a hairstyle database based on artist307

designed models and then augment its content using combinatorial308

approach. We then search for the closest hairstyle to our input im-309

age based on the silhouette of its segmentation and the orientation310

field of the hair strands. As the retrieve hairstyle may not match311

the input exactly, we further perform a strand-level fitting step to312

deform the retrieved hairstyle to the input image. The enveloping313

surface of the hair strands is then constructed using a level-set ap-314

proach to determine the normal directions of the hair strips. The315

hair strips are then generated from the hair strands using the local316

strand directions and the normal vector to the closest point of the317

reconstructed surface. Next, we produce a global hair texture map318

that is used by all hair strips, in which the uv-axes of the strips are319

consistent with those of the texture map. We first extract the feature320

correlation matrix in the observed hair region and match it with the321

closest one from a database that contains high-quality hairstyle tex-322

tures. A large, photorealistic, and non-repeating texture map is then323

generated using a neural-synthesis approach.324

Rigging and Animation. Since our linear face model is ex-325

pressed by a combination of identity and expression coeffi-326

cients [Saito et al. 2016b], we can easily obtain the neutral pose.327

From any input face, we can directly obtain their corresponding328

FACS-based expressions (including high-level controls) via trans-329

fer from a generic face model using an example-based approach [Li330

et al. 2010]. Our generic face is also equipped with skeleton joints331

based on linear blend skinning (LBS) [Parke and Waters 2008] in332

addition to blendshapes, as well as secondary components such as333

eyes, teeth, and tongue. Our model consists of 71 blendshapes, and334

16 joints in total. Our face rig also abstracts the low-level defor-335

mation parameters with a smaller and more intuitive set of high-336

level controls and manipulation handles. We implemented our rig337

in both, the animation tool, Autodesk Maya, and the real-time game338

engine, Unity.339

Though in high-end production, hair is typically represented by tens340

of thousands of individual hair strands and animated using physical341

simulation, we propose a hair strip representation commonly used342

in gaming. We rig our hair model directly with the skeleton joints343

of the head to add a minimal amount of dynamics when rotating the344

head. More sophisticated simulation techniques are possible and345

already demonstrated in modern games.346

4 Face Digitization347

We first build a fully textured head model using a multi-linear348

PCA face model. Given a single unconstrained image and the349

corresponding segmentation mask, we compute a shape V , a low-350

frequency facial albedo map I , a rigid head pose (R, t), a perspec-351

tive transformation ΠP (V ) with the camera intrinsic matrix P , and352

illumination L, together with high-frequency textures from the vis-353

ible skin region. Since the extracted high-frequency texture is in-354

complete from a single-view, we infer the complete texture map355

using a facial appearance inference method based on deep neural356

networks [Saito et al. 2016b].357

3D Head Modeling. To obtain the unknown parameters χ =358

{V, I,R, t, P, L}, we adopt the pipeline of [Thies et al. 2016a]359

which is based on morphable face models [Blanz and Vetter 1999]360

extended with a PCA-based facial expression model and an efficient361

optimization based on pixel color constraints. We further incorpo-362

rate pixel-level visibility constraints using our segmentation mask363

obtained using the method of [Saito et al. 2016a].364

We use a multi-linear PCA model to represent the low-frequency365

facial albedo I and the facial geometry V with n = 10, 822 vertices366

and 21, 510 faces:367

V (αid, αexp) = V̄ +Aidαid +Aexpαexp,

368 I(αal) = Ī +Aalαal.

Here Aid ∈ R3n×40, Aexp ∈ R3n×40, and Aal ∈ R3n×40 are the369

basis of a multivariate normal distribution for identity, expression,370

and albedo with the corresponding mean: V̄ = V̄id + V̄exp ∈ R3n,371

and Ī ∈ R3n, and the corresponding standard deviation: σid ∈372

R40, σexp ∈ R40, and σal ∈ R40. Aid, Aal, V̄ , and Ī are based373

on the Basel Face Model database [Paysan et al. 2009] and Aexp374

is obtained from FaceWarehouse [Cao et al. 2014b]. We assume375

Lambertian surface reflectanceand approximate illumination using376

second order Spherical Harmonics (SH).377

First, we detect 2D facial landmarks fi ∈ F using the method of378

Kazemi et al. [Kazemi and Sullivan 2014] in order to initialize the379

face fitting by minimizing the following energy:380

Elan(χ) =
1

|F|
∑
fi∈F

‖fi −ΠP (RVi + t)‖22.

We further refine the shape and optimize low-frequency albedo, as381

well as illumination, by minimizing the photometric difference be-382

tween the input image and a synthetic face rendering. The objective383

function is defined as:384

E(χ) = wcEc(χ) + wlanElan(χ) + wregEreg(χ), (1)

with energy term weights wc = 1, wlan = 10, and wreg = 2.5 ×385

10−5 for the photo-consistency term Ec, the landmark term Elan,386

and the regularization termEreg . Following [Saito et al. 2016b], we387

also ensure that the photo-consistency termEc is only evaluated for388

visible face regions:389

Ec(χ) =
1

|M|
∑
p∈M

‖Cinput(p)− Csynth(p)‖2,

where Cinput is the input image, Csynth the rendered image, and390

p ∈ M a visibility pixel given by the facial segmentation mask.391

The regularization term Ereg is defined as:392

Ereg(χ) =

40∑
i=1

[
(
αid,i

σid,i
)2 + (

αal,i

σal,i
)2
]

+

40∑
i=1

(
αexp,i

σexp,i
)2.
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This term encourages the coefficients of the multi-linear model to393

conform a normal distribution and reduces the chance to converge394

into a local minimum. We use an iteratively reweighted Gauss-395

Newton method to minimize the objective function (1) using three396

levels of image pyramids. In our experiments, 30, 10, and 3 Gauss-397

Newton steps were sufficient for convergence from the coarsest398

level to the finest one.399

After optimization, a high-frequency albedo texture is obtained by400

factoring out the shading component consisting of the illumination401

L and the surface normal from the input image. The resulting tex-402

ture map is stored in the uv texture map and used for high-fidelity403

texture inference.404

Face Texture Reconstruction. After obtaining the low-405

frequency albedo map and a partially visible fine-scale texture, we406

can infer a complete high-frequency texture map, as shown in Fig-407

ure 3, using a deep learning-based transfer technique and a high-408

resolution face database [Ma et al. 2015]. The technique has been409

recently introduced in [Saito et al. 2016b] and is based on the con-410

cept of feature correlation analysis using convolutional neural net-411

works [Gatys et al. 2016].412

Given an input image I and a filter response F l(I) on the layer413

l of a convolutional neural network, the feature correlation can be414

represented by a normalized Gramian matrix Gl(I):415

Gl(I) =
1

Ml
F l(I)

(
F l(I)

)T
Saito et al. [2016b] have found that high-quality facial details (e.g.,416

pores, moles, etc.) can be captured and synthesized effectively us-417

ing Gramian matrices. Let I0 be the low-frequency texture map418

and Ih be the high-frequency albedo map with the corresponding419

visibility mask Mh. We aim to represent the desired feature corre-420

lation Gh as a convex combination of G(Ii), where I1, ..., Ik are421

the high-resolution images in the texture database:422

Gl
h =

∑
k

wkG
l(Ik), ∀l s.t.

K∑
k=1

wk = 1.

We compute an optimal blending weight {wk} by minimizing423

the difference between the feature correlation of the partial high-424

frequency texture Ih and the convex combination of the feature425

correlations in the database under the same visibility. This is for-426

mulated as the following problem:427

min
w

∑
l

∥∥∑
k wkG

l
M(Ik,Mh)−Gl

M(Ih,Mh)
∥∥
F

s.t.
∑K

k=1 wk = 1
wk ≥ 0 ∀k ∈ {1, . . . ,K}

,

(2)

where GM(I,M) is the Gramian Matrix computed from only the428

masked region M . This allows us to transfer multi-scale features429

of partially visible skin details to the complete texture. We refer430

to [Saito et al. 2016b] for more detail.431

Once the desired Gh is computed, we update the albedo map I so432

that the resulting correlation G(I) is similar to Gh, while preserv-433

ing the low frequency spacial information F l(I0) (i.e., position of434

eye brows, mouth, nose, and eyes):435

min
I

∑
l∈LF

∥∥∥F l(I)− F l(I0)
∥∥∥2
F

+ α
∑
l∈LG

∥∥∥Gl(I)−Gh

∥∥∥2
F
, (3)

where LG is a set of high-frequency preserving layers and LF a set436

of low-frequency preserving layers in VGG-19 [Simonyan and Zis-437

serman 2014]. A weight α balances the influence of high frequency438

and low frequency and α = 2000 is used for all our experiments.439

Following Gatys et al. [2016], we solve Equation 3 using an L-440

BFGS solver. Since only frontal faces are available in the database,441

we can only enhance face regions in the front. To obtain a complete442

texture, we combine the results with the PCA-based low-frequency443

textures of the back of the head using Poisson blending [Pérez et al.444

2003].445

input image input uv map inferred uv map inferred textured
face model

Figure 3: We produce a complete and high-fidelity texture map
from a partially visible and low resolution subject using a deep
learning-based inference technique.

5 Hair Digitization446

Hairstyle Database. Starting from the USC-HairSalon 3D447

hairstyle database introduced in [Hu et al. 2015], we align all the448

hairstyle samples to the PCA mean head model V̄ used in Sec-449

tion 4. Inspired by [Chai et al. 2015], we also increase the number450

of samples in USC-HairSalon 3D using a combinatorial process to451

eliminate the need of an online model generation which requires452

user interactions [Hu et al. 2015].453

We first group each sample of the USC-HairSalon 3D into 5 clus-454

ters via k-means clustering using the root positions and the strand455

shapes as in [Wang et al. 2009]. Next, for every pair of hairstyles,456

we randomly pick a pair of strands among the cluster centroids.457

Next, we construct a new hairstyle using these two sampled strands458

as a guide using the volumetric combination method introduced459

in [Hu et al. 2015]. We further augment our database by flipping460

each hairstyle w.r.t. the x-axis plane, forming a total of 100,000461

hairstyles.462

input image orientation and
segmentation

descriptor
matching

hairstyle database

retrieved 
hairstyle

hairstyle 
fitting

Figure 4: We use the hair segmentation mask and orientation field
to retrieve the best matching hairstyle from a largely augmented
database. This hairstyle is then refined to fit the input segmentation
and orientation field.

Hairstyle Matching. Given the segmented hair region in the in-463

put image, we first search for a set of candidate hairstyles, which464

have similar silhouettes as the input. We adopt the highly efficient465

binary-edge descriptor from [Zitnick 2010] to describe silhouette466

regions. Once the number of potential candidates has been reduced467
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to 100, we further compare the segmentation mask and hair ori-468

entations at the pixel level using rendered thumbnails to retrieve469

the most similar hairstyle [Chai et al. 2016]. Figure 4 demon-470

strates this matching scheme as well as the hairstyle fitting result.471

Following [Chai et al. 2016], we organize our database as thumb-472

nails and descriptors for style matching. For each hairstyle in the473

database, we render the mask and the orientation map as a thumb-474

nail from 35 different views, where 7 angles are uniformly sampled475

in [−π/4, π/4] as yaw and 5 angles in [−π/4, π/4] as pitch.476

Hairstyle Fitting. The retrieved exemplar provides a rough es-477

timation of the actual hairstyle, but the silhouette and orientation478

may not be perfectly aligned with the input because of the diversity479

of hairstyles. Hence we adopt a fitting algorithm to deform each480

strand in the exemplar to match the silhouette and orientation ob-481

served from the input image. More specifically, we first search for482

a smooth warping functionW(·) by maping vertices on the exem-483

plar’s silhouette onto new positions on the input’s silhouette [Chai484

et al. 2016], and deform each hair strand with this 2D wrapping485

function by least moving distance. Then, we deform each strand486

according to the input 2D orientation map following the method in-487

troduced in [Hu et al. 2015]. We refer to [Hu et al. 2015; Chai et al.488

2016] for more details.489

input strands point cloud hair mesh hair strip
generation

Figure 5: To convert hair strands into strips, we first compute the
surface of the hair to get the normals of the hair strips. The hair
strands are resampled into a volumetric point cloud, then a surface
extracted from its corresponding signed distance field. The hair
strips are then formed along the strand directions and mesh surface
normals.

Hair Mesh Reconstruction. By considering each hair strand as490

a chain of particles, the set of all particles forms the outer surface491

of the entire hair. These intermediate representations are shown492

in Figure 5. This surface can be constructed using a signed dis-493

tance field obtained by volumetric points samples [Zhu and Brid-494

son 2005]. Such level-set extraction method is commonly used to495

extract liquid interfaces in fluid simulations. We use a variant of the496

marching cubes algorithm [Museth et al. 2013] to convert the im-497

plicit surface into a coarse mesh, which is used to estimate normal498

directions for our hair strips.499

Hair Strips Generation. Given the fitted hair strands and the re-500

constructed hair mesh, we compose close and nearly parallel hair501

strands into a hair strip, which is a parametric piece-wise linear502

patch. This thin surface structure can carry realistic looking tex-503

tures to provide additional variations of hair, such as curls, cross-504

ings, or thinner tips. Additionally, the transparency of the texture505

allows us to see through the overlay of different strips and provide506

an efficient way to achieve volumetric renderings of hair.507

Luo et al. [2013] proposed a method to group short hair segments508

into a ribbon structure. Adopting the similar method, we start from509

the longest hair strand in the hairstyle as the center strand of the510

strip. By associating the normal of each vertex on the strand to the511

closest point on the hair mesh, we can expand the center strand on512

both sides of the binormal as well as its opposite direction. We com-513

pute the coverage of all hair strands by the current strip, and con-514

tinue to expand the strip until no more strands are covered. Once a515

strip is generated, we remove all the covered strands in the hairstyle,516

and reinitiate process from the longest strand in the remaining sub-517

set hairstyle. Finally, we obtain a complete hair strips model, once518

all the hair strands are removed from the hairstyle. we refer to [Luo519

et al. 2013] for more details.520

input image hair texture 
database

feature
correlations

texture
analysis

texture
synthesis

synthesized
hair strip uv map

reference
texture

Figure 6: To generate photorealistic and non-repetitive texture
maps for the hair strips, we first extract the feature correlations
from the segmented hair region and find the closest match in our
hair texture style database. The final texture map for the hair strips
is then synthesized by the matching feature correlation.

Hair Texture Synthesis. We unwrap each wisp to be a long thin521

rectangle in uv-space and pack them along one axis. This allows522

us to build a rectangle hair texture where one direction corresponds523

to how strands are grown from top to down. In order to get a large524

enough texture for the whole hair mesh while keeping the appear-525

ance consistent and non-repeating, we adopt the recently introduced526

neural synthesis approach for style transfer [Gatys et al. 2016; Saito527

et al. 2016b], as we do in section 4. The appearance characteris-528

tic (often referred to as “style”) can be described by the Gramian529

matrix, i.e. the correlation of middle-layer responses from a pre-530

trained neural network [Simonyan and Zisserman 2014]. In partic-531

ular, the Gramian matrix can distinctively describe the appearance532

of an image at multiple scales and capture both from low-level and533

high-level features.534

The texture synthesis consists of optimizing for all the pixel inten-535

sities by enforcing similarity between the output Gramian matrix536

from the synthesized texture and the one obtained from a high-537

quality reference image (our hairstyle texture). In our optimization538

I∗ = min
I

∑
l∈LG

∥∥∥Gl(I)−G∗
∥∥∥2
F

where G∗ is the reference. In order to find G∗, we first compute539

the Gramian matrix Ĝ from the segmented hair region of the input540

image. While Ĝ could describe the texture style of the hair, it may541

be deteriorated by segmented pixels near the boundary, low reso-542

lution and noisy input, or bad lighting conditions. We, therefore,543

search for the most similar matrix G∗ from a pre-selected high-544

quality hairstyle texture database containing over 500 images for545

the synthesis. Figure 6 illustrates this synthesis process. Note that546

the Gramian matrix is anisotropic and rotation variant, thus the ex-547

panded texture will follow the same direction as reference texture.548

This is not a limitation but a useful property, given that the strip-549

based meshes are readily oriented and the desired texture can im-550

mediately follow its direction.551

6 Results552

We created fully-rigged 3D avatars with secondary components553

(eye, teeth, tongue, etc.) of subjects with different genders, ages,554

6
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input image face and hair mesh 3D avatarface and hair mesh (side) 3D avatar (side)

Figure 7: Our proposed framework successfully generates high-quality and fully rigged avatars from a single input image in the wild. We
demonstrate the effectiveness on a wide range of subjects with different hairstyles. We visualize the face meshes and hair strips, as well as
their textured renderings.
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and hairstyles. Our samples include Internet pictures of celebrities555

and our own image datasets. Each output is digitized automati-556

cally from a single picture of different resolutions and there is no557

a-priori knowledge about the scene illumination nor intrinsic cam-558

era parameters. Some heads are tilted, some are covered with hair,559

and some have expressions. The processed hairstyles also have dif-560

ferent types of high-frequency hair textures ranging from straight561

ones, messy ones, and afro-hair styles. As illustrated in Figure 7,562

our proposed framework successfully digitizes believable models of563

faces and hair, with complete textures obtained via inference based564

on deep neural synthesis. Facial details are faithfully reproduced565

in unseen regions and non-repeating naturally looking hair textures566

can be generated on top of the hair strips. Our accompanying video567

also shows several animations produced by a professional animator568

using the provided controls of or avatar.569

input image output input image 
(different lighting) output

Figure 8: Single-view modeling when the subject is captured under
different lighting conditions.

input image [Thies et al. 2016] with visibility
constraints

with visibility
constraints (uv map)

[Thies et al. 2016]
(uv map)

Figure 9: We visualize the effect of our visibility constraints when
estimating the PCA-based albedo map.

input image output input image 
(different expression) output

Figure 10: Single-view modeling when the subject is performing
different expressions.

Evaluation. We evaluate the robustness of our system and con-570

sistency of the reconstruction on several challenging input exam-571

ples. Our combined facial segmentation [Saito et al. 2016a], tex-572

ture inference [Saito et al. 2016b] and PCA-based shape, appear-573

ance, and lighting estimation [Thies et al. 2016a] framework is ro-574

bust to severe lighting conditions. In Figure 8, we can observe that575

the visual difference between the reconstructed albedo map of a576

same person, captured under extremely contrasting illuminations,577

is minimal. We also show that without our visibility constraints,578

subjects with hair fringes cannot be handled correctly as shown in579

Figure 9. We also demonstrate how our linear face model can dis-580

cern between a person’s identity and its expressions robustly. We581

reconstruct the same person in Figure 10 when performing differ-582

ent expressions. Our visualization shows the resulting avatar in the583

neutral pose. While some slightly noticeable dissimilarity remains,584

both outputs are plausible.585

input image [Thies et al. 2016] our method our method (side)

input image [Ichim et al. 2015] our method our method (side)

input image [Cao et al. 2016] our method our method (side)

Figure 11: We compare our method with several state-of-the-art
avatar creation systems.

Comparison. We compare our method against several state-of-586

the-art facial modeling techniques and avatar creation systems in587

Figure 11. Our framework can infer facial textures with more de-588

tails comparing to linear morphable face models [Blanz and Vet-589

ter 1999; Thies et al. 2016a], as well as inpaint the non-visible590

regions, using a deep learning-based facial appearance inference591

method [Saito et al. 2016b]. In addition to producing high-quality592

hair models, our generated face meshes and textures are visually593

comparable to the video-based reconstruction system of Ichim et594

al. [2015]. We can also reproduce similarly compelling avatars as595

in [Cao et al. 2016], but using only one out of many of their input596

images. While their approach is still associated with some manual597

labor, our system is fully automatic.598

Performance. All our experiments are performed using an Intel599

Core i7-5930K CPU with 3.5 GHz equipped with a GeForce GTX600

Titan X with 12 GB memory. 3D head model reconstruction takes601

5 minutes in total, consisting of 0.5 second of face model fitting,602

75 s of feature correlation extraction, 14 s of computing the con-603

vex blending weight, 172 s of the final synthesis optimization. The604

secondary component fitting and facial rigging are done within 1605

second.606

Hair strips reconstruction takes 2 seconds to retrieve the closest ex-607

emplar and 10 minutes to deform a hairstyle containing 10, 000608

strands. 5 seconds are needed to reconstruct the hair mesh, and 10609

minutes to generate the final hair strips. The hair texture reconstruc-610

tion needs less than 10 seconds to compute the Gramian matrix of611

the visible region and retrieve the most similar one. And synthesiz-612

ing a 500 × 500 texture takes 116 seconds (for 1, 000 iterations).613

We also tried to synthesize textures up to 1024× 1024, which still614

takes less than 10 minutes to complete.615

8
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7 Discussion616

We have demonstrated that the fully automatic digitization of 3D617

avatars, including hair, is possible from a single image, captured in618

an uncontrolled environment. We can produce animator-friendly619

rigged models of a person with intuitive blendshapes and joint-620

based controls, as illustrated in our animation examples. Even621

though the subject is only partially visible, the image of low resolu-622

tion, and the illumination conditions unknown, we can obtain high-623

quality textured meshes of the face and compelling looking volu-624

metric hair renderings similar to cutting-edge game characters. Our625

approach is qualitatively comparable to existing avatar creation sys-626

tems, which require multiple photographs and manual input [Ichim627

et al. 2015; Cao et al. 2016].628

The effectiveness of our methodology is grounded on a careful in-629

tegration of state-of-the-art facial shape modeling and texture in-630

ference algorithms, as well as a data-driven hair modeling pipeline631

based on hair strips. Several key components, such as semantic seg-632

mentation and feature correlation analysis, are only possible due to633

recent advances in deep learning. Our efficient and versatile hair634

strip representation is compatible with existing game engines, such635

as Unity, and suitable for the integration in real-time environments.636

We have shown that our neural synthesis-based texture generation637

algorithm is highly effective in reproducing a wide variety of highly638

stochastic messy hairstyles. Our experiments also indicate the ro-639

bustness of our system, where consistent results of the same subject640

can be obtained when captured from different angles, under con-641

trasting lighting conditions, and with different input expressions.642

Limitations. Though believable results can be produced, they are643

far from perfect. Due to the ill-posed problem of highly incomplete644

input, the low-dimensionality of our linear face models, and un-645

known intrinsic camera parameters, our shape models may not be646

fully accurate and our facial texture inference technique may add647

details in wrong places. With the dramatic progress in deep learn-648

ing research, we believe that a massive collection of high-resolution649

3D faces in controlled capture settings could be used to improve the650

fidelity of our face models, as well as the performance of shape fit-651

ting algorithms.652

While the use of hair strips is highly efficient and a reasonable ap-653

proximation of strand-based models [Hu et al. 2015; Chai et al.654

2016], we only use a simple linear-blend skinning approach to add655

dynamics to the hair. However, convincing strand-level simula-656

tions [Chai et al. 2014] are not yet possible with our representation.657

Though the use of hair strips can capture the volumetric look of hair658

as opposed to image-based alternatives [Cao et al. 2016], we can-659

not handle props such as headwear or glasses. Our method would660

also fail for longer facial hair such as beards, since our database661

does not contain these objects. We believe that an object recogni-662

tion approach and more samples in our database could make such663

digitization possible.664

Future Work. Since our framework is designed around today’s665

real-time rendering environments and facial animation systems, we666

are still using commonly used parametric models for faces and hair,667

and the results still look uncanny. In the future, we plan to ex-668

plore end-to-end deep learning-based inference methods to generate669

more realistic avatars with dynamic textures and more compelling670

hair renderings. Researches in generative adversarial networks are671

promising directions.672
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